Negative cooperativity upon hydrogen bond-stabilized O2 adsorption in a redox-active metal–organic framework

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Short‐Range Cooperativity in Hydrogen‐Bond Chains

Chains of hydrogen bonds such as those found in water and proteins are often presumed to be more stable than the sum of the individual H bonds. However, the energetics of cooperativity are complicated by solvent effects and the dynamics of intermolecular interactions, meaning that information on cooperativity typically is derived from theory or indirect structural data. Herein, we present direc...

متن کامل

Effect of hydrogen bond cooperativity on the behavior of water.

Four scenarios have been proposed for the low-temperature phase behavior of liquid water, each predicting different thermodynamics. The physical mechanism that leads to each is debated. Moreover, it is still unclear which of the scenarios best describes water, because there is no definitive experimental test. Here we address both open issues within the framework of a microscopic cell model by p...

متن کامل

Enhancing selective CO2 adsorption via chemical reduction of a redox-active metal-organic framework.

A new microporous framework, Zn(NDC)(DPMBI) (where NDC = 2,7-naphthalene dicarboxylate and DPMBI = N,N'-di-(4-pyridylmethyl)-1,2,4,5-benzenetetracarboxydiimide), containing the redox-active benzenetetracarboxydiimide (also known as pyromellitic diimide) ligand core has been crystallographically characterised and exhibits a BET surface area of 608.2 ± 0.7 m(2) g(-1). The crystallinity of the mat...

متن کامل

Redox-induced fluoride ligand dissociation stabilized by intramolecular hydrogen bonding.

Chemical reduction of a tripodal Cu(II)-F complex containing pendent hydroxyl groups results in the partial dissociation of a F(-) ligand from Cu. The resulting Cu(I) complex is characterized as containing an outer sphere F(-) anion 'captured' by hydrogen bonds. The pendent hydroxyl groups were found to be crucial for reductive stability.

متن کامل

Hydrogen Bond Control of Active Oxidizing Species in Manganese Porphyrin Hydroxylation Catalysts

Some meso-tetra aryl porphyrinato manganese (III) acetate or chloride complexes including meso-tetraphenyl porphyrinato manganese (III) chloride (TPPMnCl), meso-tetrakis(2,3-dimethoxyphenyl)porphyrinato manganese(III) acetate, (T(2,3-OMeP)PMnOAc) and meso-tetrakis(pentaflourophenyl)porphyrinato manganese (III) acetate (TPFPPMnOAc) were synthesized. These porphyrins were used as catalyst in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nature Communications

سال: 2020

ISSN: 2041-1723

DOI: 10.1038/s41467-020-16897-z